Teacher Class Report

Strengths

This class shows a strong grasp of states of matter, routinely identifying the correct state from data and describing particle behavior, with a mean of 0.92/1 on these tasks. They also demonstrate solid connections between density and state descriptions, indicating a clear grasp of how properties relate to phases. In phase-change reasoning, they perform well on melting and boiling point concepts, including recognizing bulk bubble formation and labeled terms, with a mean of 0.84/1 on these tasks.

1C — class mean 0.92/1 (skills: identify state of matter from data; states of matter and particle behavior; topics: identify correct state term from description; states of matter and density)

2A — class mean 0.84/1 (skills: boiling: bulk bubble formation; identify b labelled term; topics: identify b labelled term; melting and boiling points determine state)

Weaknesses

This class struggles to connect diffusion and random particle motion to changes in state and bond strength, and to link crystal lattices with bonding forces. They show particular difficulty with metallic bonding, including why iron has more delocalised electrons and stronger bonds than silver, and how that relates to melting and boiling points. They also tend to misapply the particle model of melting, not consistently tying bond breakage to delocalised electrons and lattice structure.

3B — class mean 0.32/2 (skills: diffusion via random particle motion; iron bonds stronger than silver; iron has more delocalised electron; iron melting point and bond strength; role of delocalised electrons in metals; topics: crystal lattices and bonding forces; delocalised electrons enable metallic bonding; iron has more delocalised electron; iron stronger metallic bonds than silver; melting and boiling points determine state; particle model melting when bonds break)

Star moments

Subquestion	Students
Q1::1a	

Opportunities for intervention

Subquestion	Students
Q9::9a(i)	

Class overview (sub-questions)

Sub	Mean	SD	Max	Avg %	Skills/Topics
1A	0.68	0.47	1	68.0%	identify state
					of matter from
					data; states of
					matter and
					particle
					behavior
					states of
					matter and
					density
1B	0.28	0.45	1	28.0%	diffusion via
					random
					particle
					motion;
					intermolecular
					forces and gas
					behavior;
					kinetic theory
					basics and
					observation
					justification;
					states of
					matter and
					particle
					behavior
					kinetic theory
					basic; kinetic
					theory: gas
					behavior,
					diffusion,
					evaporation;
					weak
					intermolecular
					forces in gases
1C	0.92	0.27	1	92.0%	identify state
					of matter from

r	Т	T.	1	T.	
					data; states of
					matter and
					particle
					behavior
					identify
					correct state
					term from
					description;
					states of
					matter and
					density
2A	0.84	0.37	1	84.0%	boiling: bulk
					bubble
					formation;
					identify b
					labelled term
					identify b
					labelled term;
					melting and
					boiling points
					determine
					state
2B	0.52	0.50	1	52.0%	condensation
					term; gas to
					liquid
					condensation;
					phase change
					naming
					condensation
					term; gas to
					liquid
					condensation;
					phase change
					naming
3A	2.56	1.50	4	64.0%	confirm silver
					state from
					data; identify
					state of matter
					from data;
					iron melting
					point and
					bond strength;
					select the
					correct
					column; state
					relative to
					room
					temperature;
					states of
	1				matter and

					particle behavior; use data to mark distinguish solid liquid ga; gas form at room temperature; identify state from mp and bp; iron solid at room temperature; melting and boiling points determine state; room temperature around twenty degree; room temperature used for state check; silver is solid at room temperature; water liquid at room temperature
3B	0.32	0.55	2	16.0%	diffusion via random particle motion; iron bonds stronger than silver; iron has more delocalised electron; iron melting point and bond strength; role of delocalised electrons in metals crystal lattices and bonding forces; delocalised electrons enable

	1	1	T	T	,
					metallic
					bonding; iron
					has more
					delocalised
					electron; iron
					stronger
					metallic bonds
					than silver;
					melting and
					boiling points
					determine
					state; particle
					model melting
					when bonds
					break
4A	2.00	1.02	3	66.7%	connect term
					with its
					definition;
					definition of
					mass; density
					relates mass
					to volume;
					mass equals
					amount of
					matter;
					matching
					keywords to
					definitions;
					volume is
					space
					occupied
					definition of
					mass; density
					definition;
					heaviness
					relative to
					size; line
					match
					keywords to
					definition; link
					term to its
					definition;
					states of
					matter and
					density;
					volume
4B	1.00	0.63	2	50.0%	diffusion via
					random
					particle
					motion; justify

	T	Т	T	1	
					higher density
					for tin; states
					of matter and
					particle
					behavior; tin
					atoms heavier
					than helium
					helium is a ga;
					kinetic theory:
					gas behavior,
					diffusion,
					evaporation;
					states of
					matter and
					density; tin is
F 4	0.52	0.50	1	F2.00/	a solid
5A	0.52	0.50	1	52.0%	skillexplain
					using particle
					flow; states of
					matter and
					particle
					behavior
					gravity acts on
					liquid; states
					of matter and
- FD	0.60	0.40	4	60.007	density
5B	0.60	0.49	1	60.0%	describe space
					between
					molecule; diffusion via
					random
					particle
					motion; justify uniform filling
					- C
					by spread; link motion to
					filling
					container gas fills container
					by spreading;
					kinetic theory:
					gas behavior,
					diffusion,
					evaporation;
					there is empty
					space between
					molecule
5C	0.40	0.49	1	40.0%	explain
30	0.70	0.49	1	70.070	vibrational
	1	İ	1	I	vibiatiOiidi
					motion

	1	Ī	<u> </u>		
					around lattice
					point; lattice
					spacing
					determines
					volume; states
					of matter and
					particle
					behavior
					crystal lattices
					and bonding
					forces;
					particles
					arranged in a
					lattice; states
					of matter and
					density;
					volume
					determined by
					lattice spacing
6	0.68	0.55	2	34.0%	assess lack of
	0.00	0.00	_	5 110 70	bubbles as
					evidence;
					boiling: bulk
					bubble
					formation;
					evaporation vs
					boiling:
					definitions
					and
					distinctions;
					justify puddle
					disappearance
					by
					evaporation;
					•
					temperature dependence of
					evaporation
					rate; use
					surface escape
					concept
					boiling
					happens at
					boiling point;
					kinetic theory:
					gas behavior,
					diffusion,
					evaporation;
					no bubbles in
					evaporation;
i					puddle

				disappears by
				evaporation; vaporization
				of surface
				particles
0.56	0.75	2	28.0%	diffusion along
		_		concentration
				gradient;
				diffusion
				depends on
				size and
				temperature;
				diffusion via
				random
				particle
				motion
				diffusion driven by
				concentration
				gradient;
				kinetic theory:
				gas behavior,
				diffusion,
				evaporation
0.40	0.49	1	40.0%	compare
				particle speed
				by state;
				diffusion
				depends on size and
				temperature;
				diffusion via
				random
				particle
				motion;
				intermolecular
				forces and gas
				behavior; use
				state
				differences to
				justify rate
				crystal lattices
				and bonding
				forces; kinetic theory: gas
				behavior,
	l	l		
				diffusion.
				diffusion, evaporation;
	0.56			

					intermolecular
					forces in gases
7C	1.00	0.80	2	50.0%	diffusion
					depends on
					size and
					temperature;
					evaporation of
					odor increases
					with
					temperature;
					kinetic theory
					basics and
					observation
					justification;
					link faster
					motion to
					odor strength;
					molecules
					have higher
					kinetic energy
					kinetic
					theory: gas
					behavior,
					diffusion,
					evaporation;
					molecules
					have higher
					kinetic energy;
					odor
					molecules
					diffuse
					through air;
					smell travels
					via gas
					molecule
8	1.88	1.48	4	47.0%	iron melting
	1.00	1.10	1	17.070	point and
					bond strength;
					states of
					matter and
					particle
					behavior
					crystal lattices
					and bonding
					forces; melting
					requires
					energy input;
					states of
					matter and
					density
	1	1	1	<u> </u>	uchisity

9A(I)	3.16	1.19	4	79.0%	air
M(I)	3.10	1.19	4	7 5.0 70	
					temperature
					measurement
					units; choose
					correct
					quantity;
					explain why
					the link is
					wrong;
					identify
					incorrect
					pairings; link
					instruments to
					measurements
					and units air
					temperature
					measurement
					units; balance
					measures
					mass;
					equipment to
					measurement
					link; gram is
					unit of mass;
					length uses
					length unit;
					measuring
					length with a
					ruler; quantity
					must match
					instrument;
					states of
					matter and
					density;
					thermometer
					measures
					temperature;
					time
					measured by
					stopwatch;
					time uses time
OD	0.60	0.47	1	60.007	unit
9B	0.68	0.47	1	68.0%	evaluate and
					select accurate
					measuring
					containers;
					identify
					proper scale
					for amount;
					read correct
	•	•		•	

		graduation cm3 equals ml concept;
		graduation spacing shows precision; read scale
		accurately; select container by volume

Per-student marks by subquestion

Student	1A	1B	1C	2A	2B	3A	3B	4A	4B	5A	5B	5C	6	7A	7B	7C	8	9A(I)	9B	Total
	1	0	1	1	1	4	0	3	1	1	1	1	1	0	1	2	4	2	1	26
	0	1	1	1	1	4	0	3	1	1	1	1	1	2	0	2	3	4	1	28
	1	1	1	1	0	0	0	1	0	0	1	1	0	0	0	0	1	4	0	12
	1	0	1	1	0	3	1	1	1	0	1	0	1	1	0	1	1	4	1	19
	1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	2	2	4	0	20
	1	0	1	1	0	1	0	1	1	0	0	0	1	0	0	0	0	4	1	12
	1	0	1	1	1	4	1	3	1	1	1	1	0	0	1	2	3	4	1	27
	1	0	1	1	1	4	1	3	2	1	1	1	1	1	1	2	4	2	1	29
	1	0	1	0	0	0	1	1	0	1	1	0	1	0	1	1	1	1	0	11
	1	0	1	1	1	2	1	3	2	1	1	1	1	0	1	2	4	0	0	23
	0	1	1	1	0	2	0	0	1	0	1	0	1	2	0	1	0	4	1	16
	1	0	1	1	0	4	0	3	1	0	1	0	0	0	0	1	2	4	1	20
	0	1	1	1	1	4	2	3	1	0	1	0	1	0	1	1	3	2	1	24
	0	1	1	1	1	0	0	1	1	1	1	1	0	2	0	1	4	4	1	21
	1	1	1	1	0	2	0	1	0	0	0	0	0	0	0	1	0	4	0	12
	1	0	1	0	0	1	0	2	1	0	0	0	1	0	0	2	2	4	1	16
	0	0	1	1	1	3	0	3	0	0	0	0	0	0	0	0	0	2	1	12

	1	0	1	1	1	4	0	3	1	1	0	0	1	0	0	0	4	2	1	21
	0	0	0	1	0	3	0	1	2	0	0	0	2	1	0	0	3	4	0	17
	0	1	1	0	0	4	0	1	1	1	1	1	1	0	0	2	0	2	0	16
	0	0	0	0	0	0	0	3	1	1	0	0	1	0	0	0	0	4	0	10
	1	0	1	1	1	3	0	3	2	1	0	0	0	1	1	1	2	2	1	21
	1	0	1	1	1	4	0	3	2	1	0	0	1	1	1	0	2	4	1	24
	1	0	1	1	1	3	0	1	1	1	1	1	0	2	1	1	2	4	1	23
	1	0	1	1	0	4	0	2	0	0	0	0	1	0	0	0	0	4	1	15

Skills and topics summary

Skills

Skill	Max Marks (total)	Class Average Marks	Class Average %
air temperature	1	0.64	66.7%
measurement units			
assess lack of bubbles as	1	0.08	8.3%
evidence			
boiling: bulk bubble	2	0.88	45.8%
formation			
choose correct quantity	1	0.64	66.7%
compare particle speed by	1	0.36	37.5%
state			
condensation term	1	0.48	50.0%
confirm silver state from data	1	0.52	54.2%
connect term with its	2	1.36	70.8%
definition			
definition of mass	1	0.72	75.0%
density relates mass to	1	0.52	54.2%
volume			

describe space between	1	0.56	58.3%
molecule	2	0.50	20.20/
diffusion along concentration	²	0.56	29.2%
gradient diffusion depends on size and	5	1.84	38.3%
temperature	5	1.04	36.3%
diffusion via random particle	6	2.08	36.1%
motion	O O	2.00	30.170
evaluate and select accurate	1	0.64	66.7%
measuring containers		0.04	00.7 70
evaporation of odor increases	1	0.40	41.7%
with temperature		0.10	11.7 70
evaporation vs boiling:	2	0.64	33.3%
definitions and distinctions		0.01	33.370
explain vibrational motion	1	0.36	37.5%
around lattice point			0,10,0
explain why the link is wrong	2	1.52	79.2%
gas to liquid condensation	1	0.48	50.0%
identify b labelled term	1	0.80	83.3%
identify incorrect pairings	2	1.52	79.2%
identify proper scale for	1	0.64	66.7%
amount			
identify state of matter from	4	2.64	68.8%
data			
intermolecular forces and gas	2	0.64	33.3%
behavior			
iron bonds stronger than	1	0.20	20.8%
silver			
iron has more delocalised	1	0.20	20.8%
electron			
iron melting point and bond	7	3.00	44.6%
strength			
justify higher density for tin	1	0.36	37.5%
justify puddle disappearance	2	0.64	33.3%
by evaporation			

justify uniform filling by spread	1	0.56	58.3%
kinetic theory basics and	2	0.80	41.7%
observation justification			
lattice spacing determines	1	0.36	37.5%
volume			
link faster motion to odor	1	0.52	54.2%
strength			
link instruments to	4	3.08	80.2%
measurements and units			
link motion to filling	1	0.56	58.3%
container			
mass equals amount of matter	1	0.72	75.0%
matching keywords to	2	1.16	60.4%
definitions			
molecules have higher kinetic	1	0.40	41.7%
energy			
phase change naming	1	0.48	50.0%
read correct graduation	1	0.64	66.7%
role of delocalised electrons	2	0.32	16.7%
in metals			
select the correct column	3	1.84	63.9%
skillexplain using particle	1	0.48	50.0%
flow			
state relative to room	2	1.32	68.8%
temperature			
states of matter and particle	14	7.00	52.1%
behavior			
temperature dependence of	2	0.64	33.3%
evaporation rate			
tin atoms heavier than helium	1	0.60	62.5%
use data to mark	1	0.60	62.5%
use state differences to justify	1	0.36	37.5%
rate			
use surface escape concept	1	0.08	8.3%

volume is space occupied	1	0.52	54.2%

Topics

Topic	Max Marks (total)	Class Average Marks	Class Average %
air temperature	1	0.64	66.7%
measurement units			
balance measures mass	1	0.88	91.7%
boiling happens at boiling	1	0.56	58.3%
point			
cm3 equals ml concept	1	0.64	66.7%
condensation term	1	0.48	50.0%
crystal lattices and bonding	4	1.08	28.1%
forces			
definition of mass	1	0.72	75.0%
delocalised electrons enable	2	0.32	16.7%
metallic bonding			
density definition	1	0.64	66.7%
diffusion driven by	2	0.56	29.2%
concentration gradient			
distinguish solid liquid ga	2	1.16	60.4%
equipment to measurement	1	0.64	66.7%
link			
gas fills container by	1	0.56	58.3%
spreading			
gas form at room temperature	1	0.72	75.0%
gas to liquid condensation	1	0.48	50.0%
graduation spacing shows	1	0.64	66.7%
precision			
gram is unit of mass	1	0.92	95.8%
gravity acts on liquid	1	0.48	50.0%
heaviness relative to size	1	0.64	66.7%
helium is a ga	1	0.36	37.5%
identify b labelled term	1	0.80	83.3%

identify correct state term	1	0.88	91.7%
from description			
identify state from mp and bp	1	0.72	75.0%
iron has more delocalised	1	0.20	20.8%
electron			
iron solid at room	1	0.56	58.3%
temperature			
iron stronger metallic bonds	2	0.32	16.7%
than silver			
kinetic theory basic	1	0.28	29.2%
kinetic theory: gas behavior, diffusion, evaporation	11	4.28	40.5%
length uses length unit	1	0.88	91.7%
line match keywords to	1	0.52	54.2%
definition			
link term to its definition	1	0.72	75.0%
measuring length with a ruler	2	1.52	79.2%
melting and boiling points	7	3.52	52.4%
determine state			
melting requires energy input	1	0.64	66.7%
molecules have higher kinetic energy	1	0.40	41.7%
no bubbles in evaporation	1	0.08	8.3%
odor molecules diffuse	1	0.52	54.2%
through air			
particle model melting when	1	0.12	12.5%
bonds break			
particles arranged in a lattice	1	0.36	37.5%
phase change naming	1	0.48	50.0%
puddle disappears by	2	0.64	33.3%
evaporation			
quantity must match instrument	1	0.64	66.7%
read scale accurately	1	0.64	66.7%

room temperature around	1	0.60	62.5%
twenty degree			
room temperature used for	1	0.52	54.2%
state check			
select container by volume	1	0.64	66.7%
silver is solid at room	1	0.52	54.2%
temperature			
smell travels via gas molecule	1	0.52	54.2%
states of matter and density	14	7.84	58.3%
there is empty space between	1	0.56	58.3%
molecule			
thermometer measures	1	0.64	66.7%
temperature			
time measured by stopwatch	1	0.64	66.7%
time uses time unit	1	0.88	91.7%
tin is a solid	1	0.36	37.5%
vaporization of surface	1	0.08	8.3%
particles			
volume	1	0.64	66.7%
volume determined by lattice	1	0.36	37.5%
spacing			
water liquid at room	1	0.60	62.5%
temperature			
weak intermolecular forces in	2	0.64	33.3%
gases			

Student-source mapping

Name	Source file
	Name Name Name

student_24	
student_25	
student_3	
student_4	
student_5	
student_6	
student_7	
student_8	
student_9	